Editorial

This seventh issue of CIEPCA’s newsletter also includes articles on forage production and animal nutrition, as well as agronomic and socioeconomic reports. We wish to thank our readers who sent us their findings on cover crops activities. We are also grateful to Dr. John P. Bishop who agreed to share with our readers his experiences about his project in central Liberia.

FORAGES AND ANIMAL FEEDING REPORTS

The potential contribution of selected forage legume pastures to cereal production in crop-livestock farming systems

S. A. Tarawali and M. Peters

1. ILRI/IITA, PMB 5320 Ibadan Nigeria
2. University of Hohenheim (380), D-70593, Stuttgart, Germany

The potential of 3-year-old grazed pastures of *Stylosanthes hamata*, *Chamaecrista rotundifolia* and *Centrosema pascuorum* to contribute to subsequent maize production was investigated in subhumid Nigeria in 1993. All three legume pastures had the ability to give better maize grain yields than native pasture but this was significant only for *Stylosanthes hamata* and *Chamaecrista rotundifolia*. For the legume species, maximum yield of maize per kg of N applied was attained at 60 kg N/ha. The subsequent yields of maize could be related to the legume species used, pasture management, and the length of the fallow period. *Centrosema pascuorum* behaved as an annual, and as such there was little legume present after 3 years; crop yield was therefore relatively low. Nevertheless, this species could be useful in 1-year fallow/pasture situations. Maize cropping was economically viable for legume plots only with 60 or 120 kg N/ha and not for native pasture. There were no significant differences in the time required to till or to weed legume pastures as compared with native pasture. Forage legume pastures could also have a positive effect on maize residue yields which represent a fodder resource in addition to the herbage understorey remaining after cropping, the quality of which could be enhanced by the presence of the forage legumes. The use of forage legumes for the promotion of both crop and livestock production in sustainable agricultural systems is discussed. The results of the study are used to highlight the importance of selecting the appropriate legume species, pasture management practices, and duration of fallow period in relation to the prevailing farming system to maximise benefits from the legumes.

(Reprinted from Journal of Agricultural Science, Volume 127, S.A. Tarawali and M. Peters. The potential contribution of selected forage legume pastures to cereal production in crop-livestock farming systems. Pages 175 - 182, © 1996, with permission from Cambridge University Press)

For further information, please contact: S.A. Tarawali
ILRI/IITA, PMB 5320, Ibadan, Nigeria. - International Mailing address: c/o L.W.Lambourn and Co., Carolyn House, 26 Dingwall Road, Croydon, Surrey, CR9 3EE, England.
Tel: +234 2 2412626 Fax: +234 2 2412221
E-mail: s.tarawali@cgiar.org
Evaluating selected forage legumes for livestock and crop production in the subhumid zone of Nigeria

S.A. Tarawali
ILRI/IITA, PMB 5320, Ibadan, Nigeria. - International Mailing address: c/o L.W.Lambourn and Co., Carolyn House, 26 Dingwall Road, Croydon, Surrey, CR9 3EE, England.
Tel: +234 2 2412626 Fax: +234 2 2412221
E-mail: s.tarawali@cgiar.org

A programme of forage legume evaluation was developed at the International Livestock Centre for Africa's (ILCA) subhumid research site in Nigeria from 1985 onwards. Evaluation included monitoring herbage and seed yields, incidence of diseases/pests, regeneration ability and persistence for three growing seasons. This was followed by an in situ bioassay to determine the direct effect of the sown legumes on maize (Zea mays L.) production in the absence of added nitrogen.

The results for selected accessions from introductions received in 1987 and 1988 are presented. Styloanthes guianensis CIAT184 (ILCA164) and ILCA15557 and Aeschynomene histrix ILCA12463 were promising both in terms of biomass production (up to 9.4, 3.4 and 9.6 t/ha respectively) and quality (all had crude protein values of 11 % or more), and in terms of beneficial effects for maize production (all plots gave significantly more grain than those with no legume, reaching over 3 t/ha for maize grown on plots after S. guianensis ILCA15557). The use of such appropriate forage legumes to enhance both livestock and crop production in a sustainable farming system is recommended.

Characterization of a germplasm collection of the tropical pasture legume Centrosema brasilianum in subhumid west Africa. Pages 139 - 147, © 1998, with permission from Cambridge University Press)

For further information, please contact: S.A. Tarawali
ILRI/IITA, PMB 5320, Ibadan, Nigeria. - International Mailing address: c/o L.W.Lambourn and Co., Carolyn House, 26 Dingwall Road, Croydon, Surrey, CR9 3EE, England.
Tel: +234 2 2412626 Fax: +234 2 2412221
E-mail: s.tarawali@cgiar.org

Grazing lands of the Guinea zone in Bénin under the threat of Chromolaena odorata

Holou R. A. Y. and Sinsin B.
Laboratoire d’Ecologie Appliquée, Faculté des Sciences Agronomiques, Université Nationale du Bénin

Chromolaena odorata is a plant of the family of the Asteraceae, It originated from the West Indies and equatorial America and was first introduced as a cover crop in Asia by the turn of the 19th century, and in Africa between 1920 and 1940 (Lavabre, 1988). C. odorata was introduced in the Guinea zone in Bénin in the seventies and its geographical distribution is widening. Among its benefits are its ability to control soil erosion, its healing and aesthetic virtues, and its soil fertility enhancement effect. According to Auffray and Gbaka (1998), “Chromolaena odorata has a very high mineral content; as high as that of leguminous forage crops when it comes to leaves”. So far as its pastoral value is concerned, it is one of the most frequently refused plants in pastures degraded by severe weed infestation in the Guinea zone in southern Benin. In this study, weed infestation is the process whereby refusals (species not normally grazed by grazing cattle in the study area) invade and grow in the pastures. The study covered 9 types of pastures in the sub-prefectures of Abomey-Calavi and Allada in southern Bénin. The aim was to work out the amount of refusals, their rate of recovery, the rate of weed infestation, and its impact on pasture quality. Pastures were sampled based on the following criteria: prevailing species, soil type, vegetation type, density of forage crops, grazing pressure, age, history, and mode of pasture management. Grazing was monitored on two herds of cattle of 28 and 65 heads respectively. Each time, grazed and refused species were recorded. Phytosociological and linear readings were taken inside 15 small experimental plots of 25 m x 25 m. The phytomass...
turned out was assessed at the peak of biomass production using down-to-ground pruning method.

The results showed that where *C. odorata* had a high rate of recovery, no other species was found. Most of the other species were found only in spaces not covered by *C. odorata*. These spaces are used as feeding passage by the cattle. In less degraded pastures, *C. odorata* colonies are reduced to a few isolated individuals. In fact, *C. odorata*, as a result of its high rate of recovery, smothers the other species thus depriving them of light. This is the reason why other species are generally few or absent under *C. odorata* bushes. The highest rates of weed-infestation and the lowest pastoral values were generally found with pastures where *C. odorata* was the most common refusal (Holou, 1998). Refusal dominance leads, among other things, to lower productivity forage species. One good illustration of such situation is provided by the pasture of *Brachiaria ruziziensis* and *C. odorata* where the phytomass of *Brachiaria ruziziensis* (a good graminae) dropped to 0.3 g DM/m² as a result of the weight input by 4 refusals, especially by *C. odorata* (150 g DM/m²). In areas with a lower weight contribution by *C. odorata* (18 g DM/m²), the phytomass of *Brachiaria ruziziensis* stood at 375 g DM/m². Furthermore, early in the rainy season, grasses, namely *Brachiaria ruziziensis* and *Panicum maximum* which are the most common forage species, are also the most grazed by the animals. Over this period, animals move easily through the bushes of *C. odorata* which they avoid. Access to the pastures is made difficult by the bushy growth of *C. odorata* on old fallow lands which are thus abandoned by the animals for younger fallows that they subject to high grazing pressure. In abandoned pastures, *C. odorata*’s refusals outgrow forage species which eventually disappear. Furthermore, one of the drawbacks of weed-infestation is the risk of poisoning run by the cattle which graze on degraded pastures (Boudet, 1991).

* DM: Dry Matter

Bibliography

For further information, please contact: Brice Sinsin, Faculté des Sciences Agronomiques Université Nationale du Bénin 01 BP 526 Cotonou, Bénin

Tephrosia vogelii

Samuel Ratnam, Director IFTCO Singapore

The common names of this plant are Kibazi, Mtupa (Swahili); hu Kataiyu (Lao) Vogel’s Tephrosia (English). The tree is grown in South-east Asia as a leguminous shrub tree.

Tephrosia vogelii is a soft woody branching herb, having a dense foliage growing to a height of up to 4m high. The stem and branch are tomentose with long and short white or rusty brown hairs.

* Agronomic Reports on Cover Crops

Tephrosia vogelii Hook. f.

The legume thrives in altitudes up to 2100 m where the mean annual temperature is 12 - 27 degrees C and mean annual rainfall is 850 - 2650mm. It grows well on andosols and loams with pH 5 - 6.5 and is tolerant to poor soil with low pH. It can grow in widely varying habitats, including Savannah-like vegetation, grassland, forest margins and shrubland, wasteland and fallow fields.

The shrub tree is propagated by seed. The rate of sowing is about 7.5 - 8.6 kg/ha at 1 metre in rows of 1.75 metres apart. If the seeds are broadcast, then the rate of sowing should be 8 - 13 kg/ha. The germination of the seed is enhanced by soaking them for 20 minutes in concentrated sulphuric acid followed by immersing in water at 28 degrees C for 2 hours. The alternative is to soak the seeds in water overnight.

The shrub grows rapidly to 2 - 3 m in 7 months. The shrub yields large amount of green material and withstands several loppings. After 6 months of growth, the average green material per hectare is above 27.41 t.
The yield of nitrogen is about 112 kg/ha. This shrub is tolerant to drought and strong winds.

Tephrosia vogelii has several uses. It is used as a shade or shelter. In this region, it is grown as a windbreak and temporary shade crop in cocoa, coffee, tea, rubber, and cinchona plantations. It is also used as green manure.

The nitrogen content is 3.7 g/100g of dry matter in plants 2 - 3 months old. Its various coloured flowers make it suitable as an ornamental. The dense growth makes it suitable for use as a hedge plant. The compound leaves contain the highest concentration of rotenoids, which makes it useful as an insecticide. Its compounds are effective against a number of different pests. It has been tested effective against termites, citrus aphids, red spider mite). Trials have shown that for killing insects, 20 g of leaves for every 100 ml of water. The crushing of the leaves need not be done perfectly. A plastic bag and rocks can be used. After soaking for 2 hours, filter the suspension through a cloth and use directly in a sprayer.

For further information, please contact:
Raphael MANLAY
DFRT /Programme JachereIRD
ENGREF - 648, rue Jean-Francois Breton
BP 5093 - 34033 Montpellier Cedex 1
France Tel: (33)(0) 467 047 121
Fax: (33)(0) 467 047 101
E-mail: manlay@engref.fr or manlay@ird.fr
ICQ: 18617853

Organic matter dynamics in mixed-farming systems of the West African savanna: a village case study from south Senegal

Raphael MANLAY

Organic matter is a multi-purpose tool in West African smallholder mixed-farming systems, but its supply has been decreasing for several decades. To assess the viability of a mixed-farming system of south Senegal, carbon (C), nitrogen (N) and phosphorus (P total and available in soil and noted POD) budgets (stocks and flows) were thus quantified. The village territory of the study showed a ring-like organisation with intensification of fertilisation and cropping practices from the periphery (bush ring) to the compounds (compound fields). Stocks in plant and soil averaged 54.7 tC, 2.63 tN and 43.5 kgP ha⁻¹ in old fallows. They were 97, 29, and 251 % higher than in the bush cropped fields, plant biomass accounting for nearly all of the difference. C, N, and P amounts recorded in the soil of compound fields were higher than those of the bush field, but the increase was restricted mainly to the 0 - 10 cm layer. However, the rather weak response of local sandy soils to management can be interpreted only by reassessing the bio-thermodynamical significiation of soil organic carbon cycling in the maintenance of the integrity of local agroecosystems. Manageable stocks of the whole village territory were estimated at 29.7 tC, 1.52 tN, and 28.6 kgP ha⁻¹ in 1997. Carbon was stored mainly in soil. Livestock, crop harvest, and wood collecting were responsible for respectively 59, 27, and 14 % of the C uptake on the village territory. As a result, large C flows were set towards the compound ring (3.8 tC ha⁻¹ y⁻¹). N and P depletion of the system amounted to 4 kgN and 1 kgP ha⁻¹ y⁻¹, suggesting that the system was close to nutrient balance. Under current demographic growth rate, C depletion may reach 0.38 t ha⁻¹ y⁻¹ and C demand may double during the next three decades. Without any intensification of farming practices, the viability of the system might soon be called into question.

For further information, please contact:
Raphael MANLAY
DFRT /Programme JachereIRD
ENGREF - 648, rue Jean-Francois Breton
BP 5093 - 34033 Montpellier Cedex 1
France Tel: (33)(0) 467 047 121
Fax: (33)(0) 467 047 101
E-mail: manlay@engref.fr or manlay@ird.fr
ICQ: 18617853

Multipurpose legume-based rotations to improve sustainability and profitability of garden and field crop production on less fertile lands in the humid tropics

Freeman, E., Jackie, H., Quetee, M., Saye, J., and Bishop, J.

Shifting field cultivation is the dominant farming system on less fertile lands in the humid tropics. Throughout the humid tropics, however, the practice of shifting field cultivation is changing rapidly due to increased population growth rates and immigration. As human population and expectations increase, traditional bush fallows are shortened, accelerating land-resource degradation at an alarming rate, and critically decreasing basic food crop yields precisely as needs are increasing. Solutions to these problems are some of the most difficult challenges facing tropical agriculture today.

Multipurpose legume-based rotations (MLRs) can help improve chemical, physical, and biological properties of soil, as well as reduce weed populations, plant pathogens, and soil erosion (six components of land-resource degradation in the humid tropics). Garden and field crop MLRs at the Ganta Stations use four each of the following six local legumes: *Gliricidia sepium*, *Cajanus cajan*, *Vigna unguiculata*, *Phaseolus lunatus*, *Mucuna pruriens*, and *Arachis hypogaea*. The MLRs provide food, feed, fertility, forage, and fuelwood; and also help control weeds, pests, diseases, and soil erosion. These MLRs also require little purchased input and low management skills.

Garden crop / multipurpose legume-based rotations

Year 1. At the first rains, plant a mix of groundnut *Arachis hypogaea* (0.25 m x 0.25 m) and pigeon pea *Cajanus cajan* (2 m x 2 m). After five months, harvest the groundnut. Then, scratch the harvested ground and broadcast cowpea *Vigna unguiculata* between plants of the fast-growing legume shrub *Cajanus* (2 m x 2 m). After three months, harvest the grain.
legume Vigna. Then, during the dry season, harvest the “food-feed-fertility-forage-fuelwood” legume Cajanus. The multipurpose cover-legume Cajanus also helps control weeds, plant pathogens, and soil erosion.

Year 2. At the first rains, plant a mixture of corn (0.5 m x 0.5 m) and the green-manure/cover-crop Mucuna pruriens (1 m x 1 m) between Cajanus (2 m x 2 m). After harvesting the corn, allow Mucuna to climb the fast-growing legume shrub Cajanus to increase Mucuna seed production. During the dry season, harvest the “food-feed-fertility-forage-fuelwood” legume Cajanus seed and the “forage-fertility” legume Mucuna seed. The multipurpose cover-legumes Cajanus and Mucuna also help control weeds, plant pathogens, and soil erosion. At the end of the dry season, slash-and-mulch the Cajanus and Mucuna plants.

Year 3. At the first rains, plant a mix of the traditional garden crops (e.g. okra, eggplant, lime bean, pineapple, sweet corn, squash, sweet potato greens). At the end of the dry season and after harvesting of garden crops, slash-and-mulch crop residues, and with the first rains repeat the above three-year rotation.

Field crop / multipurpose legume-based rotations

Year 1. At the first rains, plant a mixture of traditional grain crops (e.g. rice, corn, lima beans) and traditional farinaceous crops (e.g. cassava, plantain, sweet potato, yam, eddo). After the harvest of traditional grain crops, plant a mixture of the grain legumes cowpea Vigna unguiculata (0.5 m x 0.5 m) and pigeon pea, Cajanus cajan (1 m x 1 m), plus pawpaw Carica papaya (2 m x 2 m). After three months, harvest the grain legume Vigna. Then, during the dry season, harvest traditional farinaceous crops.

Year 2. At the first rains, plant a mix of bush-bananas Musa spp. (4 m x 4 m) and the fast-growing legume tree Gliricidia sepium (8 m x 8 m) in with the fast-growing legume shrub Cajanus (1 m x 1 m). Also, continue to harvest the plantain, eddo, pawpaw, and pigeon pea.

Years 3 and 4. Harvest the “food-feed-fertility-forage-fuelwood” legume Cajanus, and the “poultry/swine energy-feeds” Musa spp. and Carica papaya. Musa and Carica also aid land restoration by accumulating large amounts of organic matter. The multipurpose cover-legumes Cajanus and Gliricidia also help control weeds, plant pathogens, and soil erosion.

Years 5 and 6. Harvest the “poultry/swine energy-feed” Musa spp. and the “forage-fertility-fuelwood” legume Gliricidia. At the end of the sixth dry season, slash and mulch the Musa, Cajanus, and Gliricidia plants and with the first rains repeat the above six-year rotation.

For further information please contact:

J. Bishop 11806 SR 347 Marysville, OH 43040 USA, Tel: 937-348-2344, E-mail: kbishop@urec.net

E. Freeman, Ganta UM Mission Station, Ganta City, Nimba County, P.O. Box 10-1010, Liberia, West Africa.

Survey on insects associated with selected legume cover crops in the forest zone of southern Cameroon

Maurice Tindo

Leguminous cover crops are increasingly used in fallow systems to provide nutrients to the soil, protect soil surface against erosion, and prevent the invasion of noxious weeds. These characteristics have triggered in recent years considerable research work on leguminous cover crops as an alternative solution for chemical inputs in agroecosystems. About 80 accessions and 50 species of legumes are in the screening process by IITA scientists at the Humid Forest Ecoregional Center (HFC) at Mbalmayo, for their performance in this agroecozone (see CIEPCA Newsletter No 4, page 8). Since early April 1998, scientists at the HFC are investigating the insect fauna associated with the most promising legume cover crops. Next to steady field observations in different sites, a reference collection was established by net sweeping adult insects and by rearing immature stages in the laboratory, expecting the emergence of natural enemies. The damage caused by the most important species is being assessed in the field. The identification work is carried out in close collaboration with the IITA insect museum at Cotonou Republic of Benin.

The aim of this study is to provide some baseline data yet entirely lacking for insects associated with cover-crop legumes in West Africa. Furthermore, emphasis will be put on the role of these plants as potential refuges for beneficial insects or as alternative hosts for pests of food crops in the same agro-ecosystem. This work will help to draw recommendations for the use of the most suitable cover-crop legumes in this ecozone.

Preliminary data indicate that many of the insect species found on the legumes studied are commonly known as pests of grain legumes such as cowpea and soybean. For instance, during the plant’s flowering and podding phase, the aliyid Riptortus dentipes was the most common bug, followed by the coreid Cletus sp. and the pentatomids Atelocerca spinulosa, and Acrosternum pallidocompessum. These insects were observed to feed mainly on the flower’s base. Thus, they appear to be responsible for the seed sterility of Tephrosia candida, a fact that has been reported by IITA scientists at the HFC to limit the multiplication of this plant in the humid forest zone. Further pests of economic importance such as the maize ear borer Massidia nigribivenella was also observed to bore the pod of Canavalia sp. and Mucuna sp. (see also Schulthess and Setamou, CIEPCA newsletter No 4, page 2).
On the other hand, a new parasitoid of the cowpea flower thrips Megalurothrips sjostedti, was encountered for the first time around Yaoundé in 1998 and tentatively identified as Ceranisus femoratus Gahan (Hym., Eulophidae). This parasitoid has been found to survive very well on Centrosema pubescens, Dicliea guianensis, and Tephrosia candida, but not on Canavalia sp. where an unidentified thrips species is predominant. After obtaining standard import permits, C. femoratus was brought to the insectaries of the IITA station in Cotonou, and was subsequently released in experimental plots where it is now established (Tamó, pers. comm.). The Lablab purpurea pod borer, Sphenaches sp. has been found controlled by a Tropimeris species at the rate of 90%.

Some complementary work is being presently carried out for the finalization of a detailed report.

For more information, please contact: Maurice Tindo
IITA-HFC Plant Health Management Division, B.P. 2008 Messa-Yaoundé, Cameroon. E-Mail: m.tindo@cgiar.org

OTHER REPORTS ON COVER CROPS

Farmers' perceptions of adoption of soil fertility technologies

Gyamfi E., Loos H. and Anthofer J.

A case study on the adoption of cover crops such as Mucuna (Mucuna pruriens var. utilis) and Canavalia (Canavalia ensiformis (L) DC.) and animal manure was carried out to examine the farmers’ perception on soil fertility technologies in three (3) districts in Brong Ahafo Region in Ghana. Farmers compared these technologies to chemical fertiliser, which is already well known to them. Farmers ranked Mucuna and Canavalia technologies higher than chemical fertiliser because of low cost, long-term improvement of soil fertility, weed suppression and easy seed production. Chemical fertiliser and animal manure, however, ranked higher than Mucuna in terms of short-term improvement on soil fertility. The adoption rate of these technologies increased from year to year in the districts. Some farmers however considered the difficulties to intercrop Mucuna well with any other crop as the only constraint to adoption due to its’ entangling manner. Farmers’ perception of the problems associated with each of the technologies were as follows; Mucuna require land for a season without cropping and the seeds have no economic use. Canavalia seeds are difficult to acquire. Animal manure is work intensive thus difficult to transport and apply and also enhances weeds growth. Chemical fertiliser is expensive and enhances weeds growth.

For further information, please contact:
Gyamfi E., Sedentary Farming Systems Project,
P.O.Box 473, Sunyani Tel/Fax: + 233-61-27376
E-Mail: gtzsun@ncs.com.gh

Integration of Mucuna improved fallow systems into cropping systems of the Brong Ahafo Region (Ghana)

Heinz Loos, Woldfieter Zschekel, Simone Schiller and J. Anthofer

Improved fallow systems with Mucuna pruriens have been introduced in the Brong Ahafo Region (Ghana) to address problems of declining soil fertility and increasing weed loads. For the forest zone with its predominant plantain-based mixed cropping system, the use of Mucuna as a cover crop is limited. The intercropping of Canavalia has a better potential. Here Mucuna may be used as a cover crop in older plantain stands or in rotation with sole cropped rice for weed control. In the savannah zone, annual rotations with long season Mucuna and maize or yam can be used to improve soil fertility and control weeds. Establishment problems may occur in areas of erratic rainfall. For the transitional zone with two systems of Mucuna, improved fallow has been successfully introduced. Maize grown after a Mucuna fallow yielded between 30 - 70 % more than maize after natural fallow and the weed load was significantly reduced requiring only one weeding as compared to three weedicings. There is a good potential adoption for the technology, since requirement for land access, capital investment, and labour is relatively low. More experimentation with Mucuna varieties of various growing periods is necessary to adapt to local rainfall pattern and conditions.

(Reprinted from the Book of abstracts of the International Conference on Managing Resources of Tropics for Sustainable Agricultural Productivity and Annual General Meeting of the Soil Science Society of Ghana, 26 February to 2 March 2001, with kind permission from Dr. Heinz Loos, SFSP/GTZ Sunyani)

For further information please contact:
Dr. Heinz Loos, Sedentary Farming Systems Project, German Development Cooperation (GTZ) P.O. Box 473. Sunyani. Ghana. E-mail: gtzsun@ncs.com.gh

Decision support system: feasibility of legume use

Henk Breman and Henk Van Reuler
IFDC Afrique B.P. 4483, Lomé, Togo. Tel: (228) 21 79 71 Fax: (228) 12 78 17 E-mail: ifdctogo@cafét.tg
Website: www.ifdc.org

IFDC-Africa’s Programme for Integrated Intensification (PII) is developing a decision support system for guiding the choice when and where to promote or to use leguminous species. Please test the tool (see following paragraphs) and inform us about its deficiencies, giving us also the context under which it has been used (see our co-ordinates above). We would also like to know if you are interested to join forces with us and improve the tool together.

Please let us know if you are interested in other decision support systems IFDC is developing. One is related to the...
economic feasibility of fertiliser use (DSS-FFU), and can be drawn upon to obtain prices of crops and fertiliser in West Africa as well as for dose: effect relationships. IFDC’s DSS-PRU (phosphate rock use) will be the tool for making a choice between P-fertiliser or phosphate rock as source of P in stimulating legume production and its N-fixation and crop production in general.

Send your reaction to PII (our Programme for Integrated Intensification) using our address above.

Tool

1. N deficient soils?
 ▪ No: legumes no specific benefit
 ▪ Yes: see 2.

2. Problems caused by N deficient soils?
 ▪ Human nutrition protein deficient: see 3
 ▪ Livestock fodder protein deficient: see 5
 ▪ Crop growth N deficient: see 11

3. Human nutrition protein deficient and 1 kg of fertiliser-P cheaper than 3.5 kg of fertiliser-N?
 ▪ No; livestock intensification using NPK fertilised “grass” recommended;
 ▪ Yes: see 4.

4. Human nutrition protein deficient and 1 kg of fertiliser-P respectively cheaper than 11 kg of fish or poultry, or 5 kg of meat?
 ▪ No; legumes no specific benefit unless the answer on question 6 is positive
 ▪ Yes: promote production of leguminous grain crops.

5. Livestock fodder protein deficient and overall fodder availability not limiting?
 ▪ No; overall fodder availability limiting: livestock intensification using NPK fertilised “grass” recommended
 ▪ Yes: see 6.

6. N/MOD ratio of fodder < 0.017 and 1 kg of fertiliser-P cheaper than 3.5 kg of fertiliser-N?
 ▪ No; livestock intensification using NPK fertilised “grass” recommended;
 ▪ Yes: see 7.

7. Fish and poultry highly preferred above meat?
 ▪ Yes; legumes no specific benefit
 ▪ No: see 8.

8. Use of legumes to improve fodder status to be promoted; natural vegetation dominated by annuals and dynamic?
 ▪ Yes: annual fodder crops recommended
 ▪ No: see 9.

9. Use of legumes to improve fodder status to be promoted; natural vegetation dominated by perennials and relatively stable; a lot of space and pastoral production systems?
 ▪ No (limited space, agro-pastoral systems): annual fodder crops recommended
 ▪ Yes: see 10

10. Use of legumes to improve fodder status to be promoted; natural vegetation dominated by perennials and relatively stable; a lot of space and pastoral production systems; environment prone to erosion and/or soil very P-deficient?
 ▪ Yes: leguminous fodder banks recommended
 ▪ No: introduction of legumes in rangeland, suppressing woody species recommended.

11. Crop growth N-deficient and 1 kg of fertiliser-P cheaper than 3.5 kg of fertiliser-N?
 ▪ No: crop intensification using NPK fertilised crops and integrated nutrient management recommended
 ▪ Yes: crop intensification using P fertilised leguminous crops and integrated nutrient management recommended; see also 3 and 5.

ANNOUNCEMENTS

Fallow in tropical Africa
Christian Floret and Roger Pontanier

Until quite recently, the system which consists in alternating a cropping phase with a fallow phase had functioned adequately in the tropics of Africa. Today, the situation is somehow different as population figures are rising and people are settling, causing a rapid expansion of farmlands to the detriment of fallowed lands. In future, it would be proper to modulate this traditional system and envisage alternative methods.

This work is a compilation of part of the papers presented at a seminar held in Dakar from 13 through 16 April 1999. A second volume of the same work released by the same publisher runs through ten chapters on various themes, namely the role and production functions of traditional fallow in tropical Africa, the importance of improved fallows and the alternative methods that have been abandoned. This synthetic compilation on the fallow system and its future by authors from different specialized areas covers biological, agronomic as well as socioeconomic aspects. It provides a state-of-art of knowledge about the agrarian transition from fallow to continuous cultivation. This second volume should be consulted together with the first volume.

Eighteenth COLUMA conference international meeting on weed control and soil management

The COLUMA conferences are a unique meeting opportunity for the actors in crops protection, and especially weed control and soil management. The 18th COLUMA conference (5 to 7 December 2001) deals with plenary sessions on general themes and a special focus will be on current areas of interest: present or future solutions to prevent air, soil and water pollution, herbicide resistant crops, etc.

For more information, please write to: AFPP 6, Boulevard de la Bastille, F.75012 Paris. Tel: (33) 01 43 44 89 64 Fax: (33) 01 43 44 29 19 E-mail: afpp@afpp.net